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Abstract. The current gold standard for solving [nonlinear] partial differential equations, or
[N]PDEs, is the simplest equation method, or SEM. Another prior technique for solving
such equations, the G'/G-expansion method, appears to branch from the simplest equation
method (SEM). This study discusses a new method for solving PDEs called the generating
function technique (GFT) which may establish new precedence concerning SEM. First, the
study shows how GFT relates to SEM and the G'/G-expansion method. Next, the paper
describes a new theorem that incorporates GFT and Ring theory in the finding of solutions
to PDEs. Then the novel technique is applied in the derivation of new or exotic solutions to
the Benjamin-Ono, a QFT (nonlinear Klein-Gordon), and Good Boussinesq-like equations.
Finally, the study concludes via a discourse on the reasons why the technique is better than
SEM and G'/G-expansion method and the scope and range of what GFT could accomplish
in the realm of mathematics, specifically differential equations.
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Bo3moskHas Teopusi Au(pepeHInAIBLHBIX YPABHEHUI
€ YaCTHBIMH NPOU3BOAHBIMHU
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AnHoTanusa. Ha naHHBIN MOMEHT METOJ MPOCTEHIIIEr0 yPaBHEHHUS ABISETCSA CTaHIapPTHBIM
METOAOM AJISl PEUICHUs [HEIMHEHHBIX| ypaBHEHHMH B YaCTHBIX NPOU3BOAHBIX. [pyrum
MPEUMYIIECTBEHHBIM METOJOM pEIICHUS TaKuX ypaBHEHWH sBisieTcs meron G'/G-pas-
JIO’)KEHUS, KOTOPBIM SBJSIETCSI OTBETBIEHUEM OT METOJA MPOCTEHIIMX ypaBHeHUU. B naH-
HOH paboTe paccMaTpUBAETCs] HOBBIA METO]] PELICHNS YPAaBHEHHUH B YACTHBIX PON3BOTHBIX —
METO]l IPOM3BOIAIINX (DYHKIUH, KOTOPBIH MOXKET CTaTh MPUOPUTETHHIM B OTHOLIEHHH Me-
TOAA MpOCTEHIIMX ypaBHEHHH. MccinenoBaHue IMOKa3bIBa€T, KaK METOJ TE€HEPHUPYIOIIHUX
(YHKIHI COOTHOCUTCSI C METOJIOM MPOCTEHIINX ypaBHEeHHUiT 1 MeTogoM G'/G-pa3noxeHus..
OmnuceiBacTCs HOBasl TEOpEMa, KOTOpas BKIFOUAET TEXHHKY NPOW3BOIAIUX (YHKIHMHA U
TEOPHUIO KOJbIAa AJIsl OMCKA PEIleHUH ypaBHEHHH B YaCTHBIX MIPOM3BOAHBIX. Hectanmapr-
Hasgd TEXHUKA MPUMCEHACTCA U1 BbIBOJAa HOBBIX HJIN HeO6bl'-lH])lX pemeHMi& ypaBHeHl/Iﬁ ben-
JoxamuHa — OHO, HenuHeMHbIX ypaBHeHuil Kieiina — ['opnona u ypaBHenuit byccunecka.
U, HakoHel, 00CYKIAIOTCs MPUYKHBI, 10 KOTOPHIM METO]| MPOU3BOISIIMX (QYHKINH JTyd-
e, 9eM METOABl mpoctedmmx ypaBHeHHA u G'/G-pa3moKeHHs, a TaKKe KaKHX BBICOT
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MOXHO JIOCTHT'HYTbh B 00JIACTM MaTeMaTHKH, B YaCTHOCTH AU (epeHIUaTbHBIX YPABHEHNUH,
OJsiaromapsi 3ToMy METOY.

KnroueBsie cioBa: muddepeHnuaibHble ypaBHEH s, METO IIPOM3BOAAIIMX (yHKIHH, Me-
to1 G'/G-pa3noxeHust, MeTO] IPOCTEHIIIET0 YpaBHEHUS
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1. Introduction

Many notable mathematicians, like Lawrence Evans, suggest a general theo-
ry of [nonlinear] partial differential equations cannot exist. He claims there can
never be a pithy theory to describe partial differential equations due to its vast
number of [diverse] sources [1]. However, there are semi-analytical methods, like
Adomian decomposition and homotopy analysis, which have been shown to solve a
large variety of [N]PDEs [2, 3]. Unfortunately, these techniques are not purely ana-
lytical, come with extremely high computational costs, and are very time-
consuming. Therefore, one must truly ask can one find or erect a purely analytical
method for solving partial differential equations, especially [N]PDEs?

Over the last couple of decades, several analytical methods, which required
some degree of computation, for solving some [N]PDEs had been developed. In a
groundbreaking paper in 2005, Kudryashov established a rapid computational
method for finding exact solutions to NPDEs: this technique was known as the
simplest equation method [4]. The following year, He and Wu unveiled a tech-
nique, called the exponential function method, which could solve a large variety of
[N]PDE:s also by computer [5]. In 2008, Wang had devised another computational
technique for solving [N]PDEs called the G’/G-expansion method [6]. Over the
next decade and a half, variations from the above and other fewer notable tech-
niques were introduced to the world of mathematics.

Stone-Weierstrass theorem states that a continuous function can be closely
approximated to a polynomial [7]. Assuming the polynomial is a formal power se-
ries of at least an exponential function, it should converge to the exact solution of
partial differential equations with the right coefficients [8]. If one wishes to devise
a method that can solve a wide variety of partial differential equations, (s)he may
have to heed this theorem and use a formal power series of an exponential function
with the proper coefficients [9].

The above paragraph points to a method for solving [N]PDE that is well-
grounded in aspects of Ring theory. This theory is the study of algebraic structures,
called rings, in which multiplication and addition are well defined and are like op-
erations associated with integers [10]. There are many types of rings, like commu-
tative and noncommutative, and its theory delves into their structures, representa-
tions, etc. For example, a ring of a formal power series is the set of all formal pow-
er series in X with coefficients in a commutative ring R [11].

Also, the method for solving [N]PDEs gave credence to generating func-
tions, an instrument of combinatorics, as being a putative valuable utility. Initially,
Abraham de Moivre developed generating function to derive solutions to linear re-
currence problems [12]. Over time, many individuals used formal power series for
defining numerical sequences via generating functions [12]. Also, this author came
to believe generating functions may serve as a perfect vessel or analytical means
for solving [N]PDEs.
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A technique, called the Generating Function[s] Technique (GFT), for solving
at least homogeneous [N]PDEs will be discussed in this paper. First, the paper will
show how the method incorporates a set of Laurent series of formal power series
with a solution, derived from an auxiliary/characteristic equation, and trigonomet-
ric-based coefficients; thus, the paper will compare GFT to other methods (i.e., the
simplest equation (SEM), G’/G-expansion methods). Next, the study will show
how the set of formal power series, hence general and exact solution to a [NJPDE
is connected to polynomial rings via a theorem: this theorem is primarily supported
by aspects of Ring theory. Then the paper will apply the theorem on a few exam-
ples of [N]PDEs to find new or exotic solutions. Finally, the study will conclude
with a more exquisite explanation on why the method is more highly effective in
comparison to other techniques and what other functions GFT can perform.

2. Methodology

The relationship between generating functions
and the solution to the Riccati equation

The Riccati equation, a first-order ordinary differential equation (ODE), is
the following expression:

o (E)+0(E)* +0(8)=0,

where ¢ is the solution to the equation and § is the [transformed] variable [13].
Solution ¢ is defined as:

Now consider a generating function 7y, or:
(&)=Y P/ &),
i=0

where f'is some function in terms of & and p; is the i-th parameter or coefficient

g

in the formal power series [12]. If one lets function f equal to e2 and parameter p;
equal the Lucas L; combinatorial number about zero divided by two, or cos? (%) ,

the generating function y becomes:

o (&)
v(&)=DLi(&)e 2 ,
i=0

or
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It is noteworthy to state 7y is equal to negative ¢. In other words, the solu-
tion to the Riccati equation can be redefined as a generating function.

The relationship of other quintessential expressions and generating functions

There are other important functions used to solve [nonlinear] PDEs that can
be defined as generating functions. The table below provides a list of relationships
between generating functions and quintessential expressions utilized in solving
[nonlinear] PDEs.

v(E) /(€) pi
1 - 2B;(0)
1 o&a e Le;(0)
1 (&)
l—eﬁ"_cl e 2 Li (0)
1 (&)
&4 41 e 2 20;(0)
1
cosh(&—¢p)—1 e~ 2H;(0)
(E-a) (&)
—csch [le o 2 2F;(0)
é_ —C
sech[%} e(gz ) 2,/F;(0)

Bi, Lei, L;, U, F;, and H; are the i-th binomial, Laguerre L, Lucas L, Cheby-
shev U, Fibonacci, and Harmonic [combinatorial] numbers about zero, respective-
ly.

The general solution associated with GFT

In general, consider the following expression:

(dl_dn) —n +1
(pn_pl)

Ds 2 n

B

where p; is the power of the solution u in a putative series or the level of Laurent
serial truncation for solution u, d; is the highest degree of the linear terms, d, is the
total degree of a nonlinear term, p, is the total power of the same nonlinear term, p;
is the highest power of the linear term, which is one, and 7, is the number of basic
nonlinear terms (including the source type). Note: finding the exact p; is not neces-
sary but it will lower the time necessary for deriving the solution u.

SEM defines the general solution of a [nonlinear] PDE as a rudimentary lin-
ear combination or simple sum of the solution to the Riccati equation, or:

Ds .
U; (§)= i),
=0
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where 7; is the i-th coefficient or parameter [4]. The Riccati equation serves as an
auxiliary equation to SEM and more specifically the G’/G-expansion method [4, 6].

Now consider the [transformed] general solution for GFT which involves a
[truncated] Laurent series [14]. The putative [transformed] general solutions u(x),
or U(&), too many PDEs is defined as:

2 Py o . J > . J
vE=>| Y aij{z2f(§)ka(0)l} +b,-j{22f(§)kck(0)’J ,
i=1| j=p, k=0 k=0

where the (square root of the) Fibonacci k-th number/parameter given/for zero is
the following expression:

F (&)= sin(n—kj,
2
and the Chebyshev U k-th number/parameter given/for zero is expressed as:
Cr (&)= cos(%kj.

Note: the ansatz transformed variable & is a linear array of intermedi-
ates/variables, or the following expression:

&=t +Px,

where o and P are coefficients to the variables or intermediates ¢ and x, respec-

tively. This expression is only for a 1 + 1-dimensional system.
If one wishes not to work with coefficients with negative indices, then shift
the [truncated] Laurent series via p, like:

2 | 2p, o0 . J=ps oo . J=Ps
u)=>>, ay[Z%(é)"Fk(O)’] +bl~j[22f(a)"ck(0)’]
i=1| j=0 k=0 k=0

This expression/transformed general solution involves an offset. Through
GFT, the auxiliary/characteristic equation used for the facilitation of SEM and the
G’/G-expansion method is a basic first-order ODE, or:

J'(&)+7s(8)=0.

Its solution is simply defined as:

f(E)=ce .

Using the solution to the above basic auxiliary equation in the general solu-
tion to some principal partial differential equation gives rise to hyperbolic secant,
hyperbolic cosecant, hyperbolic sine, hyperbolic cosine via Fibonacci or sine-based
parameters/generating functions and expressions involving one plus hyperbolic
tangent and cotangent via Chebyshev U or cosine-based parameters/generating
functions raised by various powers.
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The degree of “diversity” of solutions u of [nonlinear] PDEs established by
GFT will be dependent upon the complexity of the auxiliary equation used. The
auxiliary equation of GFT, which will be used to derive f, hence generating func-
tion % can be any order linear ODE.

3. Theorem

Let u, be the general solution while u. be the exact solution to the differential
equation F. The differential equation F'is defined as:

F(u, v, U, Ut U, Un...) = 0.

Definition 3.1. The general solution ug, which is a set of formal power series
and their multiplicative inverses, is a ring formed from the set of polynomials in
one or more indeterminates with coefficients in another ring/field, or

Ug € R[[x]]{E}. The general solution uy may also include [hyperbolic] trigonomet-

ric functions (i.e. hyperbolic secant, hyperbolic cosecant, etc.) raised by various
powers which are generally polynomial ring analogs.

Definition 3.2. Transformed general solution U, which is a set of formal
power series and their multiplicative inverses, is a ring formed from the set of pol-
ynomials with one indeterminate with coefficients in another ring/field, or

Uge R[[AE), /2E), coes [ (&)]]{E}, where f;(x) is equal to the product of some
i-th constant and the transformed variable & and 1 <i < m. The transformed gen-
eral solution U, may also include [hyperbolic] functions raised by various powers
which are polynomial ring analogs.

A formal power series (of an exponential function) establishes a polynomial
ring R[[x]]'*' [15, 16, 17]. (Note: {E} designates an exponentiated entity.) On the
other hand, the Maclaurin/Taylor series establishes a polynomial ring analog [17].
The multiplicative inverse of some formal power series will produce either another
formal power series or the analog of a polynomial ring R[[x]]*. Since polynomial
rings can be commutative and associative or undergo both addition and multiplica-
tion, another polynomial ring [analog] is generated by raising the power of formal
power and Maclaurin/Taylor series. The general solution u, and its transformed
general solution U, are a set of Laurent series of polynomial rings and their ana-
logs. Since polynomial rings can be commutative and associative, their net sum is a
larger polynomial ring [analog].

Lemma 3.3. If U, is a polynomial ring, then the transformed differential

equation F  will be a polynomial ring also. In other words,
E
Fe R[LA®) H®), - fn @',
Lemma 3.4. If the common denominator C of transformed differential equa-

tion F is a polynomial ring, or Ce R[[&]]{E} , then the product of the common de-

nominator C and transformed differential equation F is another polynomial ring P,

or C X F=Pe R[[/E), /), . fn 1.

Lemma 3.5. If the polynomial ring P possesses features of an ideal, such as

generators (i.e. (e&), etc.), it could be viewed as being a free ideal ring, or fir.
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Lemmas 3.3 to 3.5 states that one can establish a group of coefficients and
(set of) generator[s] via the free ideal ring P after plugging the transformed general
solution U o into the differential equation F' and multiplying the result by its com-

mon denominator. The transformed general solution U g is operated on by a com-

position of operators in the differential equation which forms a differential poly-
nomial ring F' [18]. This ring can be viewed as a dividing [formal] power series. By
multiplying the differential polynomial ring F by its common denominator series
C, an individual would be left with the numerator series which is another polyno-
mial ring P [19]. The most latter polynomial ring is comprised of free modules,
which have a non-zero ring of coefficients and linearly independent generating set
(generatorf[s]), or:

PEEEE) s

O 1,60, 210, )

where the [exponentiated] function f; (i) is the i-th generator. Since the product

polynomial P possesses non-zero coefficients with multiplicative inverses and a
[unique] rank linked to the generating set, it can also be viewed as being a free ide-
al ring [20].

The generating set is derived from the solution of the auxiliary/characteristic
equation, utilized in the establishment of the transformed general solution U, and
used to define the rank of free ideal ring P. For instance, if the solution to the auxil-
iary/characteristic equation is:

f(§)=cle_§,

therefore, the generator is (e&') , where f{(&) is equal to the product of trans-
formed variable & and the value 1. The free ideal ring P is established by this sole

generator and has a rank equal to 1. On the other hand, the auxiliary/characteristic
solution is defined as follows:

0(&)=c¢jcos(&)+cysin(§),

then the generator is (ei‘t’) , where f1(&) is equal to the product of transformed
variable & and the imaginary unit i. The free ideal ring P established by this lone

generator also has a rank equal to 1. In other instances, the solution to the auxilia-
ry/characteristic equation can produce m generators, thus the resultant product pol-
ynomial ring P generally yields a rank equal to m [20]. (Note: if the number of in-
dependent columns 7, or special rank, is greater than or equal to the m, or general
rank, then the [right] free ideal ring is a n-fir or semifir, respectively. Also, the ma-
jor difference between a division and a free ideal ring is their level of symmetry:
division rings are ALL left-right symmetric while free ideal rings are not.)

Lemma 3.6. If the coefficients of the polynomial free ideal ring P are made
to equal to zero, then the exact solution u. may exist.

Definition 3.7. The exact solution u. is a polynomial subring of the trans-
formed general solution U g
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Lemma 3.6 and definition 3.7 claim that an individual can derive possibly at
least one exact solution u, from the transformed general solution U, by interrogat-

ing the coefficients linked to the free ideal ring P. The coefficients associated with
the generator[s], linked to the free ideal ring P, form algebraic equations that
should be set to zero. Thus, an individual considers the free ideal ring P to be a
nontrivial zero-polynomial. In other words, using the polynomial free ideal ring P,
which is a zero-polynomial, one can determine the values of the constants (i.e., a;,
by, o, B, etc.) within the set of [truncated] Laurent series and its formal power se-
ries. Ultimately, (s)he should be able to derive at least one exact solution u. for the
differential equation F.

Lemma 3.8. If an exact solution u. exists for the differential equation F, then
the differential equation F vanishes when the exact solution u. is plugged into the
equation.

Once an exact solution u. is placed into the differential equation/polynomial
ring F, an individual obtains zero. In other words, the differential equation F be-
comes a zero-polynomial ring, like the free ideal ring P, after the introduction of
the general solutions u, with solved constants (i.e., coefficients/parameters, etc.).

Theorem 3.9. If one is dealing with a [homogeneous] partial differential
equation F, which occurs in the physical universe, then (s)he can utilize a set of
Laurent series of formal power series, comprised of combinatorial numbers (spe-
cifically Fibonacci and Chebyshev numbers about zero)/trigonometric-based pa-
rameters and some function [ (which is the solution to an ordinary differential
equation), to find exact solutions u. to the equation F.

Besides expounding upon the theorem developed by Stone-Weierstrass, this
theorem is analogous to, but not the same as the Cauchy-Kovalevskaya [7, 21, 22].
Both theorems suggest that if a (system of) equation[s] is analytical, then the solu-
tion[s] will be analytical. However, this new theorem does not require Cauchy ini-
tial or other conditions (i.e., Neumann, Dirichlet) for the derivation of exact solu-
tions. The examples shown below will provide proof.

4. Examples

All calculations were performed with Mathematica®. The supplemental to
this paper contains Mathematica® spreadsheets for each example. Finally, all
transformed general solutions U were based upon polynomial exponential rings.

4.1. The Benjamin-Ono equation
The nonlinear Benjamin-Ono equation is defined as follows:

U, +uy +uu, =0.

The transformed [N]PDE F in terms of the transformed solution U (&) is:

2 u?
O(U§+[3 U§§+B T =0.
g

First, one considers and solves the following first-order linear ODE/auxiliary
equation:
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@)+ r(8)=0.

Again, its solution is defined as:

f(&)= cle_g.

Then one calculates the possible maximal/minimal power of the solution ps.
An individual obtains a ps equal to / for this situation. Then (s)he plugs in the p;
value and the solution f'to the auxiliary/characteristic equation into the transformed
general solution U(&). It is important to note the transformed general solution U(&)
satisfies definitions 3.1 and 3.2. Next, the individual applies the transformed gen-
eral solution U into the transformed [N]PDE or applies lemma 3.3. By multiplying
this transformed [N]PDE with its common denominator, or implementing lemma
3.4, (s)he produces a large expression, which should be a free ideal ring (lemma
3.5). This large expression can be used to establish at most eighteen algebraic

equations linked to the generator sets <e§> :

Ba(1,0)? +2Ba(2,0)a(1,0)+Ba(2,0)* =0,
3c}’a(1,0)b(1,0)—3Bcta(2,0)h(1,0) -
—3Bc}’a(1,0)5(2,0)+3Bc}’a(2,0)5(2,0) =0,
—6Bcl*b(1,0)2 — 6Bci *b(2,0)* +12Bc *5(1,0)5(2,0) =0,
2Bci®h(1,0)% + 2Bc®h(2,0)% — 4Bci®h(1,0)5(2,0) =0,
2Bci’a(1,0)b(1,0) + 4Bc}’a(1,2)b(1,0) - 4Bci>a(2,2)b(1,0) +
+2B¢1°a(1,0)b(1,1) = 2Bci a(2,0)b(1,1) = 4Bcf *a(1,2)b(2,0) -
—2Bcl%a(2,0)5(2,0)+4Bcia(2,2)b(2,0)+2Bcl a(1,0)5(2,1) -
—2Bci a(2,0)b(2,1)+20ci a(1,0) - 20cia(2,0) - 2B%¢}a(1,0) +
+2B%ct a(2,0)+ 2Bci a(1,0)a(1,1) - 2Bc}’a(1,1)a(2,0) +
+2B¢1%a(1,0)a(2,1) - 2Bcl%a(2,0)a(2,1) =0,
4Bci®a(1,1)5(1,0) +4Bci%a(2,1)b(1,0) — 4Bc{a(1,1)b(2,0) -
—4Bc{®a(2,1)b(2,0)+Bcf%a(1,0)* +Bcfa(2,0)? -
—2B¢{%a(1,0)a(2,0)+ 4aci °h(1,0) - 40ic{ ®h(2,0) - 882 ®h (1,0) +

+882¢{ 5 (2,0) +2Bci®h(1,0)% — 2Bcf ®h(2,0)% + 4Bcf ®h(1,0) b (1,1) -
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—4Bcib(1,1)5(2,0)+4Bc]®h(1,0)5(2,1) - 4Bc}%b(2,0)b(2,1) =0,
Beia(1,0)b(1,0)+Beja(2,0)5(1,0) +2B¢1a(1,0)b(1,1) + 2Beja(2,0)b(1,1) +
+4Bcya(1,0)b(1,2) +4Bca(2,0)b(1,2) +Beja(1,0)b(2,0) +Beya(2,0)b(2,0) +
+2Bcya(1,0)b(2,1) +2Bc¢1a(2,0)b(2,1) + 4Bcja(1,0)5(2,2) +4Bcia(2,0)5(2,2) +
+20c1a(1,0) +20¢1a(2,0) + 2B%¢;a(1,0) + 2B%¢ia(2,0) + 2Beia(1,0) a(1,1) +
+2Bc¢1a(1,1)a(2,0)+2Bcia(1,0)a(2,1) + 2Bcia(2,0)a(2,1) =0,
~10Bci®a(1,0)5(1,0)+8Bcl%a(2,0)b(1,0) +8Bcla(2,2)b(1,0) -
—2Bct3a(1,0)6(1,1)=8Bcla(1,2)b(1,1)-2Bcl>a(2,0)b(1,1)+8Bci>a(2,2)b(1,1) -
—4Bcl®a(1,0)h(1,2) +4Bcia(2,0)h(1,2) +8Bct a(1,0)b(2,0) -
—8Bc%a(1,2)5(2,0)~10Bci%a(2,0)b(2,0) - 2Bcia(1,0)b(2,1) -
—8Bc}%a(1,2)b(2,1) - 2Bci>a(2,0)b(2,1) +8Bct a(2,2)b(2,1) +
+4Bci%a(1,0)5(2,2) - 4Bci*a(2,0)b(2,2) - 20ic}3a(1,0) - 8oic}>a (1,2) -
—2acl?a(2,0)+80cta(2,2) - 2B%cl%a(1,0) - 88%cl3a(1,2) - 2B%c%a(2,0) +
+88%ci3a(2,2) - 2Bct3a(1,0)a(1,1) - 8Bct a(1,1)a(1,2) - 2Bci®a(1,1)a(2,0) -
—2Bcl®a(1,0)a(2,1)-8Bcia(1,2)a(2,1) - 2Bcla(2,0)(2,1) +
+8Bcla(1,1)a(2,2)+8Bcta(2,1)a(2,2) =0,
—2Bcia(1,0)b(1,0)—4Bcia(1,2)b(1,0) - 4Bcia(2,2)b(1,0) - 2Bcia(1,0)b(1,1) -
—8Bcia(1,2)b(1,1)+2Bcia(2,0)b(1,1) - 8Bcia(2,2)b(1,1) = 16Bcia(1,2)h(1,2) +
+8Bcia(2,0)b(1,2) ~16Bcia(2,2)b(1,2) - 4Bcia(1,2)5(2,0) +
+2Bcia(2,0)b(2,0)—4Bcia(2,2)b(2,0) - 2Bcia(1,0)b(2,1) - 8Bcia(1,2)b(2,1) +
+2Bcia(2,0)h(2,1)-8Bcia(2,2)h(2,1) - 8Bcia(1,0)h(2,2) -
—16Bcia(1,2)b(2,2) - 16Bcia(2,2)b(2,2) - 20t a(1,0) - 8oci a(1,2) +
+20cia(2,0) - 8ocia(2,2) + 2B%ca(1,0) + 83 ca(1,2) — 2B%cia(2,0) +

+88%cia(2,2) - 2Bcia(1,0)a(1,1) - 8Bcia(1,1)a(1,2) + 2Bcia(1,1)a(2,0) -
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—2Bcia(1,0)a(2,1)-8Bcia(1,2)a(2,1)+ 2Bcia(2,0)a(2,1) -
—8Bcia(1,1)a(2,2)-8Bcia(2,1)a(2,2) =0,
—6Bcia(1,0)h(1,0)~24Bcia(2,2)b(1,0)—6Bcia(1,0)b(1,1)+24Bcta(1,2)b(1,1) -
—6Bcia(2,0)b(1,1) = 24Bcia(2,2)b(1,1) = 12Bc7a(1,0)b(1,2) +

+96Bcia(1,2)h(1,2) -

36Bcia(2,0)6(1,2)+ 24Bcia(1,2)b(2,0) -

—6Bcia(2,0)b(2,0) - 6Bcia(1,0)b (21 +24Bcia(1,2)h(2,1) - 6Bcia(2,0)b(2,1) -
—24Bcia(2,2)b(2,1)- 1,0)5(2,2) - 12B¢]a(2,0)b(2,2) -
~96Bcia(2,2)b(2,2) - 60cia(1,0)+ 24aca(1,2) - 60cia(2,0) - 240cia(2,2) -
—6B%cia(1,0)-728%¢]a(1,2) - 6B%cia(2,0) + 728%¢)a(2,2) - 6Bcia(1,0)a(1,1) +
+24Bcia(1,1)a(1,2) - 6Bcia(1,1)a(2,0) - 6Bcia(1,0)a(2,1)+
+24Bcia(1,2)a(2,1)-6Bcia(2,0)a(2,1) -
—24Bcia(1,1)a(2,2)-24Bcia(2,1)a(2,2)=0,
6Bcia(1,0)b(1,0)+12Bc] a(1,2)b(1,0) - 28B¢{ a(2,2)b(1,0) + 6Bc] a(1,0)b(1,1) -
—16B¢]a(1,2)b(1,1) = 6Bc{ a(2,0)b(1,1) = 16Bc] a(2,2)b(1,1) -
—192Bc]a(1,2)b(1,2) +16Bc] a(2,0)b(1,2) -32Bc] a(2,2)b(1,2) -
—28Bc{a(1,2)b(2,0)—6Bc] a(2,0)b(2,0)+12Bc{ a(2,2)h(2,0) +
+6Bc]a(1,0)h(2,1) = 16Bc]a(1,2)b(2,1) - 6Bc]a(2,0)b(2,1)—16Bc] a(2,2)b(2,1) -
—16B¢{a(1,0)h(2,2)-32Bc]a(1,2)b(2,2) ~192B¢] a(2,2)h(2,2) +
+60c{a(1,0)~160c] a(1,2) - 60ic] a(2,0) —160c] a(2,2) — 6B%c] a(1,0) +
+176B%c] a(1,2) + 6B%c]a(2,0) +176B%c] a(2,2) + 6Bc] a(1,0)a(1,1) -
—16Bcya(1,1)a(1,2)-6Bc] a(1,1)a(2,0)+6Bc]a(1,0)a(2,1)-16Bc]a(1,2)a(2,1) -
—6Bc]a(2,0)a(2,1)~16Bc]a(1,1)a(2,2)-16Bc]a(2,1)a(2,2) =0,
12B¢{a(1,0)b(1,0) - 6Bca(2,0)b(1,0) +16Bci a(2,2)b(1,0) + 6Bc{a(1,0)b(1,1) -
—16B¢ia(1,2)b(1,1)+6Bcia(2,0)b(1,1)+16Bcia(2,2)b(1,1) +
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+12Bcia(1,0)b(1,2) +160Bc)a(1,2)b(1,2) +28Bc{a(2,0)b(1,2) -
—6Bcfa(1,0)b(2,0)~16B¢a(1,2)b(2,0) +12Bcf a(2,0)b(2,0) +
+6Bcra(1,0)h(2,1)~16Bcf a(1,2)b(2,1) + 6Bcia(2,0)b(2,1) +
+16Bcia(2,2)b(2,1)+28Bc]a(1,0)6(2,2) +12Bcia(2,0)b(2,2) -
~160Bcia(2,2)h(2,2) +60cia(1,0)~160c;a(1,2) + 6oy a(2,0) +
+160ca(2,2)+6B%c]a(1,0) - 17687 a(1,2) + 6B>ca(2,0) + 17687 a(2,2) +
+6Bcia(1,0)a(1,1)—16Bcia(1,1)a(1,2)+6Bcia(l,1)a(2,0)+
+6Bcia(1,0)a(2,1)~16Bcia(1,2)a(2,1)+6Bcia(2,0)a(2,1)+
+16Bcia(1,1)a(2,2)+16Bcla(2,1)a(2,2) =0,
—6Bci'a(1,0)b(1,0)~12Bc}'a(1,2)5(1,0) +36Bci 'a(2,2)b(1,0) -
—6Bcia(1,0)b(1,1)+24Bc} 'a(1,2)b(1,1) +36Bc] 'a(1,2)b(2,0) +
+6Bcta(2,0)5(2,0) - 12Bci'a(2,2)b(2,0) - 6Bct'a(1,0)b(2,1) +
+24Bct1a(1,2)b(2,1)+6Bci'a(2,0)b(2,1) +24Bct 'a(2,2)b(2,1) +
+24Bcia(1,0)b(2,2) + 48Bc] 'a(1,2)b(2,2) - 48Bc] 'a(2,2)b(2,2) -
—60cci'a(1,0) + 240 'a(1,2) + 60ci 'a(2,0) + 240c) 'a (2,2) +
+6p7ci'a(1,0)+ 72B%c} 1a (1,2) - 6B%c} la(2,0) + 72B%¢} la(2,2) -
—6Bcila(1,0)a(1,1)+24Bci a(1,1)a(1,2) + 6Bci 'a(1,1)a(2,0) -
—6Bctla(1,0)a(2,1)+24Bc 'a(1,2)a(2,1) + 6Bc} a(2,0)a(2,1) +
+24Bctla(1,1)a(2,2) + 24c}a(2,1)a(2,2) =0,
—12B¢}2a(1,1)b(1,0) ~12Bci?a(2,1)b(1,0) —16Bci?a(1,1)b(1,2) -
—16Bci2a(2,1)b(1,2) +12Bci?a(1,1)6(2,0) +12Bcl?a(2,1)b(2,0) +
+16Bci2a(1,1)b(2,2) +16Bci?a(2,1)h(2,2) - 4Bcj?a(1,0)* —16Bci?a(1,2)? —
—4Bci?a(2,0)* —16Bcia(2,2)* +4Bcia(1,0)a(2,0)-16Bc]%a(1,2)a(2,0) +
+16Bci%a(1,0)a(2,2) +32Bci?a(1,2)a(2,2) — 1201} *h(1,0) —160ic} 2b (1,2) +
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+120¢{%h(2,0)+160ici2b(2,2) +24B%c]%b (1,0) ~328%¢{*h(1,2) - 24B%¢{?h(2,0) +
+32B%¢12h(2,2) - 6Bci?b(1,0)* + 6Bcl 2 b(2,0)% —12Bc}?b(1,0)b(1,1) -
—16B¢%h(1,1)b(1,2) +12Bc}%b(1,1)b(2,0) - 16Bc}*b(1,2)b(2,0) -
—12B¢}%b(1,0)b(2,1) ~16Bc}?h(1,2)b(2,1) +12Bcl?b(2,0)b(2,1) +
+16Bc1%b(1,0)5(2,2) + 168} b (1,1)b(2,2) +16Bc|*h(2,1)5(2,2) = 0,
—4Bcia(1,1)b(1,0)—4Bcta(2,1)b(1,0) + 16Bcta(1,1)b(1,2) + 16Bcta(2,1)b(1,2) +
+4Bcta(1,1)5(2,0) - 4Bcta(2,1)b(2,0)—16Bcta(1,1)5(2,2) -
—16Bcia(2,1)b(2,2)-4Bcta(1,0)* —16Bcia(1,2)> —4Bcta(2,0)* ~16Bci a(2,2)* —
—4Bcia(1,0)a(2,0)+16Bcia(1,2)a(2,0)~16Bcta(1,0)a(2,2) -
—32Bcfa(1,2)a(2,2) - 40cib(1,0) + 160 b(1,2) + 4oci b (2,0) —160icib(2,2) +
+8B2¢1'b(1,0) - 32B%ch(1,2) - 882¢'h(2,0) +32B%ch(2,2) - 2Bcb(1,0)* +

+32B¢ib(1,2)% +2Bcib(2,0)? —32Bcth(2,2)* - 4Bcib(1,0)b(1,1)
+16Bcib(1,1)b(1,2) + 4Bcib(1,1)b(2,0) +16Bc;'b(1,2)b(2,0) -

N
2)b(
—4Bci'b(1,0)5(2,1) +168cib(1,2)b(2,1) + 4Bch(2,0)b(2,1)
—16Bc1h(1,0)5(2,2) —16Bcb(1,1)b(2,2) =16Bcib(2,1)5(2,2) =0,
—328ca(1,1)b(1,2)-32BcPa(2,1)b(1,2) - 32BPa(1,1)h(2,2) -
—32BcPa(2,1)b(2,2) +64Bcla(1,2)? —64Bcla(2,2)* —32Bcla(1,2)a(2,0) -
—32BcPa(1,0)a(2,2) - 320cPh(1,2) —3201c0h(2,2) +128B%cPb (1,2) +

+1288%¢0h(2,2) - 2BePb(1,0)% —96BcPh(1,2)% — 2BcPb(2,0)% —96BcPh(2,2)* —
—32Bch(1,1)b(1,2) +4BcPb(1,0)5(2,0) - 32BcPh(1,2)b(2,0) -
—328ch(1,2)5(2,1) = 32BcPh(1,0)5(2,2) - 32BcPb(1,1)5(2,2) -

—64Bch(1,2)b(2,2) -32BcPh(2,1)5(2,2) =0,
12Bc8a(1,1)b(1,0) +12Bca(2,1)b(1,0) —12Bcta(1,1)b(2,0) -

—12Bcfa(2,1)5(2,0)+6Bca(1,0)* —96Bcla(l,2)* + 6Bcta(2,0)* -
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-96Bcta(2,2)? +120ch(1,0) —120cth(2,0) - 24B2cf(1,0) 19287 (1,2) +
+24B2c5h(2,0) +192B%cPh(2,2) + 6Bcih(1,0)% +96Bch(1,2)% — 6BcTh(2,0)% —
—96Bcth(2,2)% +12Bctb(1,0)b(1,1) ~12Bcth(1,1)5(2,0) +
+12Bc¢8h(1,0)5(2,1)~12Bc}h(2,0)5(2,1) = 0,

and
32Bci%(1,1)6(1,2) +32Bc} % (2,1)b(1,2) +32Bci%a (1,1)5(2,2) +
+32B¢1%(2,1)b(2,2) +64Bci®a(1,2)* — 64Bc}0a(2,2)? +32Bct%a(1,2)a(2,0) +
+32B¢1%(1,0)a(2,2) +320c]°b (1,2) + 320 °b(2,2) +128B%¢{ °b (1,2) +

+1288%¢1%5(2,2) + 6Bc %(1,0)? —32Bci%b(1,2)% + 6Bcib(2,0)? —32Bci%b(2,2)* +
+32B¢1°5(1,1)5(1,2) - 128¢1°5(1,0)5(2,0) + 32B¢] %5 (1,2)5(2,0) +
+32B¢1%(1,2)5(2,1) +32B¢} b (1,0)5(2,2) +32B¢] % (1,1)b(2,2) +

+64B¢1°b(1,2)5(2,2) +32B¢]°b(2,1)5(2,2) = 0.
The eighteen algebraic equations are used to solve for constants a;, by, f,
and c¢; whenever possible via lemma 3.6. Substituting in the previously described

constants into the transformed general solution gives rise to a set of possible exact
solutions u like:

2BeBx

P _CleBt(al1+‘121+B+b10+b11+b21)

M()C,t): +a11+a21+b10+b11+b21.

Note: the above solution u satisfies definition 3.7. Regarding lemma 3.8,
plugging the above exact solution u into the original [N]PDE F' causes the latter to
vanish. Thus, theorem 3.9 is proven true.

Now an individual can derive new solutions if they change the characteris-
tic/auxiliary equation to a second-order linear ODE given below:

7€)+ 1 (&)+f(6)=0.
The solution to this equation is as follows:

s 3
f(§)=c1e Zsin[%j-q-%e ZCOS(@J'

2

Next, the transformed Benjamin-Ono equation can be simplified by integrat-

ing it with respect to the transform variable &, therefore, one is left with the follow-
ing [N]PDE:
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2 U?
oU+B°Ueg +3—=0.
B°U: +B 5

Then (s)he plugs in the same p; value and the solution fabove into the trans-
formed general solution U (i), therefore, satisfying definitions 3.1 and 3.2. Next,
the individual applies the transformed solution U into the transformed [N]PDE F or

implements /emma 3.3. By multiplying this transformed [N]PDE F with its com-

mon denominator, (s)he produces a large expression (lemma 3.4) that establishes at
& i3E

most forty-five algebraic equations linked to generators (e2,e 2 ) or lemma 3.5.

(The free ideal ring P for this example has a rank of 2.) The forty-five algebraic

equations are used to solve for constants aj, b;, ¢, and whenever possible via

lemma 3.6. Substituting in the previously described constants into the transformed
general solution gives rise to the final exact solution[s] u like:

2i(\/§ —i)BeB(ZBHx)
eB(ZBHX) —ic%eZi\/gﬁztsin(\/gﬁx) +c§eZi\/§B2tCOS(\/§BX) |

u(x,t):

The latter solution to the equation is new or exotic and satisfies definition
3.7. Regarding lemma 3.8, the exact solution u causes [N]PDE F to vanish. Again,
theorem 3.9 is proven true.

4.2. A QFT (nonlinear Klein-Gordon)[-like| equation.
The QFT][-like] equation is defined as the following expression:

Uy +Uy, +u+u’ =0.
The transformed [N]PDE F in terms of the transformed solution U (&) is:
Otngg + BZU§§ +U+U> =0.

First, one calculates the possible maximal/minimal power of the solution p;.
An individual obtains a ps equal to / for this situation. Then (s)he determines the
solution to the following auxiliary equation:

S+ 7(8)=0,
which is:
F(&)=cicos(&)+cysin(E).
Next, (s)he plugs in the ps value and the solution f to the characteris-

tic/auxiliary equation into the transformed general solution U (&) thereby satisfy-

ing definitions 3.1 and 3.2. Next, the individual applies the transformed solution in-
to the transformed [N]PDE F or applies lemma 3.3. By multiplying this trans-
formed [N]PDE with its common denominator, (s)he produces a large expression
(lemma 3.4) which establishes at most thirteen algebraic equations linked to the set

of generators (e’g) or lemma 3.5. The thirteen algebraic equations are used to
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solve for constants a;;, b;, ¢, and [ whenever possible through lemma 3.6. Substi-
tuting in the previously described constants into the transformed general solution
gives rise to the final exact solution[s] u like:

i2
\/—clz - 2c1sin(2at -V1- 4a2xj + (c12 + l)cos(Zat —-V1- 4a2xj

. 1 . 1
u(x,t)=2i- {—cgsmz (oct +, /—062 ——xJ—ic%s1n(2at+ |—40? —2—xJ+
2 2
1 -1
+c%cosz(0ct+4/—002 —Ex)—l} +1.

The above solutions are considered new or exotic and satisfy definition 3.7.
Apropos lemma 3.8, the exact solutions cause the [N]JPDE F' to vanish and ulti-
mately prove theorem 3.9.

u(x,t)=

and

4.3. The Good Boussinesq|-like] equation.

The Good Boussinesq[-like] equation is defined as the following expression:
2
u
Ugp + Uy + Uy T [TJ =0.
XX

The transformed [N]PDE F in terms of the transformed solution U (§) is:

U2
O(ng(: + Bngg + B4U§§§§ + Bz LT] =0.
29

This equation can be simplified by integrating it with respect to the trans-
form variable ¢, therefore, one is left with the following [N]PDE:
02U +B2U +B*Ug +B° (U2 /2) 0.
First, one calculates the possible maximal/minimal power of the solution ps.

An individual would obtain a p, equal to 2 for this situation. Next (s)he finds a so-
lution to the auxiliary/characteristic equation, which is a linear ODE, like:

e+ r)=o

The above equation solution is:

5 3
f(&) = C1e_§ +cye? sinig}k 0382 CosL@J‘
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Then the individual plugs in the p, value and the solution f of the characteris-
tic/auxiliary equation into the transformed general solution U (i) that satisfies def-

initions 3.1 and 3.2. Next, the individual applies the transformed solution U into
the transformed [N]PDE F or lemma 3.3. By multiplying this transformed [N]PDE
with its common denominator, (s)he produces a large expression (lemma 3.4)
which establishes at most four-hundred and sixty-five algebraic equations linked to

ENES

generator set e2,e 2 or lemma 3.5. (Even though one would anticipate the rank
for this free ideal ring P to be 2, (s)he obtains a rank of 7 for the algebraic struc-
ture.) These algebraic equations are used to solve for constants a;, by, o, and
whenever possible via lemma 3.6. Substituting in the previously described con-
stants into the transformed general solution gives rise to the final exact solution[s]
u like:

96(1-iv/3)B*c3e™
(4% 1)cos(3E) + (e +1)sin(V32) |

u(x,t)=

where

_ \/16\/5[34 —16ip* —3p% - it
E=Px+ m .

The above solution is considered new or exotic and satisfies definition 3.7.
The exact solution u makes the [N]JPDE F vanish as defined by lemma 3.8.
Therefore, theorem 3.9 is proven true.

Conclusion
The distinction between SEM, the G’/G-expansion, and GFT

The major difference between SEM, the G’/G-expansion method, and GFT
is how their auxiliary equations are used. The auxiliary equation utilized in SEM
create the template by which solutions are established while the generating func-
tion performs that same task for GFT. The auxiliary equation usage in GFT is for
adding complexity or greater diversification to the template through which solu-
tions are established. The auxiliary equation is used in similar fashion by the G’/G-
expansion method but to a much lesser extent. In other words, the G’/G-expansion
method’s auxiliary equation usage is a lot more limited with respect to GFT. As
discussed before, an auxiliary equation that is a first-order linear ODE will let GFT
create solutions like SEM. It is important to note these solutions tend to be primari-
ly comprised of a [hyperbolic] secant, cosecant, tangent, or cotangent function in
the numerator position. If an individual uses a higher-order auxiliary equation,
(s)he produces a greater variety of solutions where "differing (and large) combina-
tions" of [hyperbolic] sine, cosine, and exponential functions appear in both the
numerator and denominator positions.

From one dimension to beyond

GFT can be used to solve a large range of PDEs including problems that
have more than one spatial dimension. This paper primarily focuses on the genera-
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tion of soliton-based solutions for (1 + 1) PDEs; thus, the "bilinear" form of GFT is
only utilized in this study. If one needs to solve (N + 1) PDEs, where N > 2, then

the individual just adds more coefficients and variables or intermediates to &, like
the following for N = 3:

E=out+Bx+Bry+Bsz,

then make the appropriate transformations to the PDE. Next, (s)he can find
the exact solution by committing the same steps used to solve 1 + 1 equations, but
one must also solve for additional coefficients of the added variables or intermedi-
ates if deemed necessary. (Generally, (s)he just needs to solve for o concerning the
other coefficients.) Therefore, "multilinear" GFT can solve N + 1 PDEs. An indi-
vidual can also apply "unilinear" GFT to solve ordinary differential equations, by
restricting & to one specific coefficient and variable/intermediate product, like oz,
then committing the same steps that are described above. Finally, GFT can be used
to generate new and exotic solutions to regular linear [partial] differential equations
if one uses a p; equal to or lesser than -7.
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